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Ideal Lowpass Digital Differentiator

The frequency response of the ideal lowpass digital differentiator is

HLP (ejω) =

{
j ω |ω| < ωc

0 ωc < |ω| < π
(1)

• It is a narrow-band filter if ωc is much smaller than π.

• A narrow-band filter should have a long impulse response.

• =⇒ It is desirable to have simple design algorithms so that ill-conditioning

and computational complexity is minimized.

• The window method for FIR filter design is a natural choice in this case. The

design method described here gives an alternative approach.
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EOG Example

The next slide illustrates the result of filtering an EOG signal with:

1. a full-band differentiator and

2. a narrow-band lowpass differentiator

Differentiation with the full-band differentiator yields an extremely noisy signal,

while lowpass differentiation gives a more useful result.
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EOG SIGNAL

n

EOG SIGNAL AFTER LOWPASS DIFFERENTIATION

EOG SIGNAL AFTER FULLBAND DIFFERENTIATION
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Design

To avoid the undesirable amplification of noise in digital differentiation, lowpass

differentiators can be used in place of full-band ones.

Low-pass digital differentiator design:

1. Maxflat

2. Least-squares

3. Remez

4. Flat passband, Equiripple stopbands (Kaiser, Rabiner, Vaidyanathan)
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Our Approach

We describes a simple formulation for the non-iterative design of narrow-band

FIR linear-phase lowpass digital differentiators.

• The filters are flat around dc and have equally spaced nulls in the stopband.

• The impulse response can be written as a sum of sines (Frequency sampling

expression).

• The design problem is formulated so as to avoid the complexity or ill-conditioning

of standard methods for the design of similar filters when those methods are

used to design narrow-band filters with long impulse responses.
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Analog Lowpass Differentiator

The sinc function is given by

sinc(f ) :=
sin(π f )

π f
.

The function sinc(f ) is symmetric (sinc(−f ) = sinc(f )) and equal to zero for

f = ±1,±2,±3, . . . ; therefore if we define

sk(f ) := sinc(f − k)− sinc(f + k)

then we have

1. sk(f ) is antisymmetric, sinc(−f ) = − sinc(f ).

2. sk(f ) = 0 for f ∈ Z/{±k}.
(sk(f ) = 0 whenever f is an integer different from ±k.)
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Analog Lowpass Differentiator

The digital filter design procedure we propose begins with an analog frequency

response having the following form:

A(f ) =

K∑

k=1

a(k, K) (sinc(f − k)− sinc(f + k))

Therefore, the frequency response A(f ) has the following properties:

1. A(f ) is antisymmetric, A(−f ) = −A(f ).

2. A(f ) = 0 for f = 0, and for f = ±(K + 1),±(K + 2),±(K + 3), . . . .

• The frequency response A(f ) is zero at f = 0.

• The first null in the stopband depends on K.

• The exact behavior of A(f ) depends on the coefficients a(k, K), however, the

uniformly spaced nulls in the stopband ensures that the attenuation increases

with frequency.
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Problem Formulation

The coefficients a(k, K) are to be determined so that the frequency response

A(f ) approximates f near f = 0

A(f ) ≈ f.

Given K, find a(k, K) for 1 ≤ k ≤ K such that the derivatives of A(f ) at

f = 0 match the derivatives of the ideal differentiator IdealDiff(f ) := f at the

point f = 0:

A(1)(0) = 1 (2)

A(i)(0) = 0, i = 3, 5, . . . , 2 K − 1. (3)

• The even derivatives are automatically zero because A(f ) is an odd function,

A(−f ) = −A(f ).

• This is a linear system of equations with an equal number of equations and

variables.

• The stopband of A(f ) is neither equiripple nor maximally flat.
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Example

For example, when K = 1, we have

a(1, 1) =
1

2
.

When K = 2, we have

a(1, 2) = −1

6
+

1

9
π2

a(2, 2) = −4

3
+

2

9
π2

When K = 3, we have

a(1, 3) =
1

48
− 13

288
π2 +

7

480
π4

a(2, 3) =
16

15
− 16

9
π2 +

14

75
π4

a(3, 3) =
243

80
− 81

32
π2 +

189

800
π4
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Example

When K = 4, we have

a(1, 4) = − 1

720
+

29

4320
π2 − 427

64800
π4 +

31

18900
π6

a(2, 4) = −16

45
+

208

135
π2 − 2366

2025
π4 +

496

4725
π6

a(3, 4) = −2187

560
+

2187

160
π2 − 5103

800
π4 +

2511

4900
π6

a(4, 4) = −2048

315
+

2048

135
π2 − 12544

2025
π4 +

15872

33075
π6

Other values a(k, K) can be easily computed.
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Conversion to Digital Filter

To convert the analog frequency response A(f ) into a digital frequency response

D(f ), we can use the digital sinc function in place of the usual sinc function.

The digital sinc function dsinc(f, N) can be written as

dsinc(f,N) :=
sin(Nπ f )

sin(π f )
. (4)

• The digital sinc function defined in (4) is periodic in f with period 2:

dsinc(f + 2) = dsinc(f ).

•We have the following approximation:

sinc(f ) ≈ 1

N
dsinc

(
f

N
,N

)
for |f | < 0.5 N.

for large values of N .
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Sinc vs. Digital Sinc
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Sinc Minus Digital Sinc
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Sinc vs. Digital Sinc

sinc(f ) ≈ dsinc(f/N)/N, for |f | < 0.5N

especially for large values of N .

The design of digital differentiators described here is intended for long impulse

responses. In this case, N is large and the approximation is valid.
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Digital Lowpass Differentiators

Consider the function D(f ), based on the digital sinc function:

D(f ) =
1

N

K∑

k=1

a(k, K)

[
dsinc

(
f − k

N
,N

)
− dsinc

(
f + k

N
,N

)]

For N > K, we have the approximation

D(f ) ≈ A(f ) for |f | < N/2.

For example: with K = 3, N = 30:
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A(f)−D(f)
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Digital Lowpass Differentiators

Consider the function D(f ), based on the digital sinc function:

D(f ) =
1

N

K∑

k=1

a(k, K)

[
dsinc

(
f − k

N
,N

)
− dsinc

(
f + k

N
,N

)]

• The function D( N
2 πω) is then a 2 π periodic function of ω and can therefore

be used as the frequency response H(ejω) of a digital filter.

• Then H(ejω) will be approximately maximally flat at ω = 0.
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Digital Lowpass Differentiators

The impulse response h(n) is given by the inverse discrete-time Fourier transform

of H(ejω),

h(n) = IDTFT

{
e−j(N−1

2 )ω ·D
(

N

2 π
ω

)}

where the phase term is included to make h(n) causal. Then h(n) is a linear-

phase FIR impulse response of length N :

h(n) =
1

N 2

K∑

k=1

a(k, K) sin

(
2πk

N

(
n− (N − 1)

2

))

for 0 ≤ n ≤ N − 1. Once a table of values a(k, K) is computed, it can be used

regardless of the length N of the impulse response h(n).

The width of the passband is controlled by the parameter K, the number of

flatness constraints at dc. Note that 2 (K − 1) is the number of zeros of H(z)

that lie away from the unit circle, as illustrated in the following examples.
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Example K = 2
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Example K = 3
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Example K = 4
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Example K = 5
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Example K = 6
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Example K = 2
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Lowpass differentiator (K = 2, N = 101).

There are 2 = 2(K − 1) zeros contributing to the shape of the passband.
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Example K = 3
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Lowpass differentiator (K = 3, N = 101).

There are 4 = 2(K − 1) zeros contributing to the shape of the passband.
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Example K = 4
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Lowpass differentiator (K = 4, N = 101).

There are 6 = 2(K − 1) zeros contributing to the shape of the passband.
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Example K = 5
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Lowpass differentiator (K = 5, N = 101).

There are 8 = 2(K − 1) zeros contributing to the shape of the passband.
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Example K = 6
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Lowpass differentiator (K = 6, N = 101).

There are 10 = 2(K − 1) zeros contributing to the shape of the passband.
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Summary

1. Simple Design Algorithm

2. Efficient Implementation — Frequency Sampling

3. Still needed: Design rules — How to choose N and K so that specifications

are satisfied.

4. Closed form formulas for a(k, K)?

5. Smaller stopband ripple can be achieved by appropriate modification.
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