Narrow-Band Low-Pass Digital Differentiator Design

Ivan Selesnick
Polytechnic University
Brooklyn, New York
selesi@poly.edu
http://taco.poly.edu/selesi

Ideal Lowpass Digital Differentiator

The frequency response of the ideal lowpass digital differentiator is

$$
H_{L P}\left(e^{j \omega}\right)= \begin{cases}j \omega & |\omega|<\omega_{c} \tag{1}\\ 0 & \omega_{c}<|\omega|<\pi\end{cases}
$$

- It is a narrow-band filter if ω_{c} is much smaller than π.
- A narrow-band filter should have a long impulse response.
$\bullet \Longrightarrow$ It is desirable to have simple design algorithms so that ill-conditioning and computational complexity is minimized.
- The window method for FIR filter design is a natural choice in this case. The design method described here gives an alternative approach.

EOG Example

The next slide illustrates the result of filtering an EOG signal with:

1. a full-band differentiator and
2. a narrow-band lowpass differentiator

Differentiation with the full-band differentiator yields an extremely noisy signal, while lowpass differentiation gives a more useful result.

EOG SIGNAL AFTER FULLBAND DIFFERENTIATION
 MTM 1

EOG SIGNAL AFTER LOWPASS DIFFERENTIATION

n

Design

To avoid the undesirable amplification of noise in digital differentiation, lowpass differentiators can be used in place of full-band ones.

Low-pass digital differentiator design:

1. Maxflat
2. Least-squares
3. Remez
4. Flat passband, Equiripple stopbands (Kaiser, Rabiner, Vaidyanathan)

Our Approach

We describes a simple formulation for the non-iterative design of narrow-band FIR linear-phase lowpass digital differentiators.

- The filters are flat around dc and have equally spaced nulls in the stopband.
- The impulse response can be written as a sum of sines (Frequency sampling expression).
- The design problem is formulated so as to avoid the complexity or ill-conditioning of standard methods for the design of similar filters when those methods are used to design narrow-band filters with long impulse responses.

Analog Lowpass Differentiator

The sinc function is given by

$$
\operatorname{sinc}(f):=\frac{\sin (\pi f)}{\pi f}
$$

The function $\operatorname{sinc}(f)$ is symmetric $(\operatorname{sinc}(-f)=\operatorname{sinc}(f))$ and equal to zero for $f= \pm 1, \pm 2, \pm 3, \ldots$; therefore if we define

$$
s_{k}(f):=\operatorname{sinc}(f-k)-\operatorname{sinc}(f+k)
$$

then we have

1. $s_{k}(f)$ is antisymmetric, $\operatorname{sinc}(-f)=-\operatorname{sinc}(f)$.
2. $s_{k}(f)=0$ for $f \in \mathbb{Z} /\{ \pm k\}$.
$\left(s_{k}(f)=0\right.$ whenever f is an integer different from $\pm k$.)

The digital filter design procedure we propose begins with an analog frequency response having the following form:

$$
A(f)=\sum_{k=1}^{K} a(k, K)(\operatorname{sinc}(f-k)-\operatorname{sinc}(f+k))
$$

Therefore, the frequency response $A(f)$ has the following properties:

1. $A(f)$ is antisymmetric, $A(-f)=-A(f)$.
2. $A(f)=0$ for $f=0$, and for $f= \pm(K+1), \pm(K+2), \pm(K+3), \ldots$.

- The frequency response $A(f)$ is zero at $f=0$.
- The first null in the stopband depends on K.
- The exact behavior of $A(f)$ depends on the coefficients $a(k, K)$, however, the uniformly spaced nulls in the stopband ensures that the attenuation increases with frequency.

The coefficients $a(k, K)$ are to be determined so that the frequency response $A(f)$ approximates f near $f=0$

$$
A(f) \approx f
$$

Given K, find $a(k, K)$ for $1 \leq k \leq K$ such that the derivatives of $A(f)$ at $f=0$ match the derivatives of the ideal differentiator $\operatorname{IdealDiff}(f):=f$ at the point $f=0$:

$$
\begin{align*}
A^{(1)}(0) & =1 \tag{2}\\
A^{(i)}(0) & =0, \quad i=3,5, \ldots, 2 K-1 . \tag{3}
\end{align*}
$$

- The even derivatives are automatically zero because $A(f)$ is an odd function, $A(-f)=-A(f)$.
- This is a linear system of equations with an equal number of equations and variables.
- The stopband of $A(f)$ is neither equiripple nor maximally flat.

Example

For example, when $K=1$, we have

$$
a(1,1)=\frac{1}{2} .
$$

When $K=2$, we have

$$
\begin{aligned}
& a(1,2)=-\frac{1}{6}+\frac{1}{9} \pi^{2} \\
& a(2,2)=-\frac{4}{3}+\frac{2}{9} \pi^{2}
\end{aligned}
$$

When $K=3$, we have

$$
\begin{aligned}
& a(1,3)=\frac{1}{48}-\frac{13}{288} \pi^{2}+\frac{7}{480} \pi^{4} \\
& a(2,3)=\frac{16}{15}-\frac{16}{9} \pi^{2}+\frac{14}{75} \pi^{4} \\
& a(3,3)=\frac{243}{80}-\frac{81}{32} \pi^{2}+\frac{189}{800} \pi^{4}
\end{aligned}
$$

Example

When $K=4$, we have

$$
\begin{aligned}
& a(1,4)=-\frac{1}{720}+\frac{29}{4320} \pi^{2}-\frac{427}{64800} \pi^{4}+\frac{31}{18900} \pi^{6} \\
& a(2,4)=-\frac{16}{45}+\frac{208}{135} \pi^{2}-\frac{2366}{2025} \pi^{4}+\frac{496}{4725} \pi^{6} \\
& a(3,4)=-\frac{2187}{560}+\frac{2187}{160} \pi^{2}-\frac{5103}{800} \pi^{4}+\frac{2511}{4900} \pi^{6} \\
& a(4,4)=-\frac{2048}{315}+\frac{2048}{135} \pi^{2}-\frac{12544}{2025} \pi^{4}+\frac{15872}{33075} \pi^{6}
\end{aligned}
$$

Other values $a(k, K)$ can be easily computed.

To convert the analog frequency response $A(f)$ into a digital frequency response $D(f)$, we can use the digital sinc function in place of the usual sinc function.

The digital sinc function $\operatorname{dsinc}(f, N)$ can be written as

$$
\begin{equation*}
\mathrm{d} \operatorname{sinc}(f, N):=\frac{\sin (N \pi f)}{\sin (\pi f)} \tag{4}
\end{equation*}
$$

- The digital sinc function defined in (4) is periodic in f with period 2 :

$$
\mathrm{d} \operatorname{sinc}(f+2)=\mathrm{d} \operatorname{sinc}(f)
$$

- We have the following approximation:

$$
\operatorname{sinc}(f) \approx \frac{1}{N} \operatorname{dsinc}\left(\frac{f}{N}, N\right) \quad \text { for } \quad|f|<0.5 N
$$

for large values of N.

Sinc vs. Digital Sinc

Sinc Minus Digital Sinc

$$
\operatorname{sinc}(f) \approx \operatorname{dsinc}(f / N) / N, \quad \text { for } \quad|f|<0.5 N
$$

especially for large values of N.

The design of digital differentiators described here is intended for long impulse responses. In this case, N is large and the approximation is valid.

Consider the function $D(f)$, based on the digital sinc function:

$$
D(f)=\frac{1}{N} \sum_{k=1}^{K} a(k, K)\left[\operatorname{dsinc}\left(\frac{f-k}{N}, N\right)-\mathrm{d} \operatorname{sinc}\left(\frac{f+k}{N}, N\right)\right]
$$

For $N>K$, we have the approximation

$$
D(f) \approx A(f) \quad \text { for } \quad|f|<N / 2
$$

For example: with $K=3, N=30$:

Consider the function $D(f)$, based on the digital sinc function:

$$
D(f)=\frac{1}{N} \sum_{k=1}^{K} a(k, K)\left[\operatorname{dsinc}\left(\frac{f-k}{N}, N\right)-\operatorname{dsinc}\left(\frac{f+k}{N}, N\right)\right]
$$

- The function $D\left(\frac{N}{2 \pi} \omega\right)$ is then a 2π periodic function of ω and can therefore be used as the frequency response $H\left(e^{j \omega}\right)$ of a digital filter.
- Then $H\left(e^{j \omega}\right)$ will be approximately maximally flat at $\omega=0$.

Digital Lowpass Differentiators

The impulse response $h(n)$ is given by the inverse discrete-time Fourier transform of $H\left(e^{j \omega}\right)$,

$$
h(n)=\operatorname{IDTFT}\left\{e^{-j\left(\frac{N-1}{2}\right) \omega} \cdot D\left(\frac{N}{2 \pi} \omega\right)\right\}
$$

where the phase term is included to make $h(n)$ causal. Then $h(n)$ is a linearphase FIR impulse response of length N :

$$
h(n)=\frac{1}{N^{2}} \sum_{k=1}^{K} a(k, K) \sin \left(\frac{2 \pi k}{N}\left(n-\frac{(N-1)}{2}\right)\right)
$$

for $0 \leq n \leq N-1$. Once a table of values $a(k, K)$ is computed, it can be used regardless of the length N of the impulse response $h(n)$.
The width of the passband is controlled by the parameter K, the number of flatness constraints at dc. Note that $2(K-1)$ is the number of zeros of $H(z)$ that lie away from the unit circle, as illustrated in the following examples.

Example $K=2$

Example $K=3$

Example $K=4$

FREQUENCY RESPONSE

Example $K=5$

Example $K=6$

Example $K=2$

Lowpass differentiator ($K=2, N=101$).
There are $2=2(K-1)$ zeros contributing to the shape of the passband.

Example $K=3$

Lowpass differentiator ($K=3, N=101$).
There are $4=2(K-1)$ zeros contributing to the shape of the passband.

Example $K=4$

Lowpass differentiator ($K=4, N=101$).
There are $6=2(K-1)$ zeros contributing to the shape of the passband.

Example $K=5$

Lowpass differentiator ($K=5, N=101$).
There are $8=2(K-1)$ zeros contributing to the shape of the passband.

Example $K=6$

Lowpass differentiator ($K=6, N=101$).
There are $10=2(K-1)$ zeros contributing to the shape of the passband.

1. Simple Design Algorithm

2. Efficient Implementation - Frequency Sampling
3. Still needed: Design rules - How to choose N and K so that specifications are satisfied.
4. Closed form formulas for $a(k, K)$?
5. Smaller stopband ripple can be achieved by appropriate modification.
